
A Bayesian Approach to Building Footprint Extraction from Aerial LIDAR Data

Oliver Wang, Suresh K. Lodha, David P. Helmbold
University of California, Santa Cruz

Santa Cruz, Ca, 95064
{owang,lodha,dph}@soe.ucsc.edu

Abstract

Building footprints have been shown to be extremely use-
ful in urban planning, infrastructure development, and roof
modeling. Current methods for creating these footprints
are often highly manual and rely largely on architectural
blueprints or skilled modelers. In this work we will use
aerial LIDAR data to generate building footprints automat-
ically. Existing automatic methods have been mostly unsuc-
cessful due to large amounts of noise around building edges.
We present a novel Bayesian technique for automatically
constructing building footprints from a pre-classified LI-
DAR point cloud. Our algorithm first computes a bounded-
error approximate building footprint using an application
of the shortest path algorithm. We then determine the
most probable building footprint by maximizing the poste-
rior probability using linear optimization and simulated an-
nealing techniques. We have applied our algorithm to more
than 300 buildings in our data set and observe that we ob-
tain accurate building footprints compared to the ground
truth. Our algorithm is automatic and can be applied to
other man-made shapes such as roads and telecommunica-
tion lines with minor modifications.

1. Introduction

Building footprints are valuable tools for urban devel-
opment. They have been widely used in urban planning,
construction of telecommunication lines, pollution model-
ing, disaster planning, and many other kinds of urban sim-
ulations. In addition, building footprints not only localize

buildings, but also reveal valuable information about the
structure of building roofs and vertical walls that would be
otherwise invisible to aerial sensors [9].

Because of their usefulness, many roof modeling tech-
niques use building footprints to simplify the reconstruction
problem. These building footprints are generally acquired
by manual input or prior knowledge, often relying on archi-
tectural blueprints and skilled modelers. Blueprints are also
limited in usefulness as they are generally available only
for modern buildings and in large urban areas. The manual
creation of building footprints requires trained personnel,
which can lead to a high cost for these footprints. Any au-
tomation in this process would decrease the cost of acquisi-
tion and the reliance on outside information, thereby mak-
ing urban models more accessible worldwide. This wide
scale availability of building footprints could allow for more
informed development decisions in many situations.

Rather than using manual input or existing models, we
propose a data driven technique to generate building foot-
prints. Aerial LIDAR technology is a good choice for the
creation of 2.5D point clouds of large scale areas as it is
both cheap and accurate compared to many other ranging
methods. LIDAR collection involves using a time-of-flight
laser ranging setup mounted on a fixed wing airplane or he-
licopter. Data is collected in strips as the aircraft flies over-
head. As a pre-processing step, we first classify the data into
buildings, trees and grass. Individual buildings are then seg-
mented from the data. We use these segmented regions as
the input to our building footprint extraction algorithm.

Techniques that use only aerial LIDAR data have the ad-
vantage that they do not rely on outside information, making
data acquisition an easier task. In addition, because LIDAR



sampling density is rapidly increasing, it is reasonable to
expect that the accuracy of these methods will increase di-
rectly with the density of the sampling technology. How-
ever, one common difficulty that has plagued many data-
driven building footprint creation algorithms is that there is
generally a lot of noise in the data points that lie around the
edges of buildings. This noise can be caused by overhang-
ing trees, sensor noise, or noise in the classification results.
An example of this can be seen in Figure 1, where a noisy
building boundary can be seen in the second image. Any
method which works directly on the observed data points
must approximate straight building edges despite the pres-
ence of noise.

Figure 1. Aerial LIDAR data points of a rectangu-
lar building and surrounding region. The left fig-
ure contains tree and ground points. The right fig-
ure shows just building points, with high bound-
ary noise visible.

Our approach uses a maximum a posteriori (MAP)
estimation (e.g. Mitchell [16]) to determine the most
likely building footprint given the noisy data and our prior
knowledge of building shapes. We maximize this condi-
tional probability by using a gradient descent optimization
method. The field of optimization is mature and a vari-
ety of powerful methods exist. By formulating our prob-
lem in an optimization framework, we can take advantage
of these techniques. For the initial conditions of this op-
timization, we first compute an approximate building foot-
print using a graph theoretic algorithm and greedy search.
We define an objective function for a building footprint that
takes into account the disparity from observed data and how
well the footprint matches our prior knowledge of buildings.
We solve the maximum a posteriori estimation by gradually
evolving the building footprint.

While our project employs building specific priors, it
would be easy to extend our algorithm to different shapes,
such as roads or telecommunication lines, by simply chang-
ing the prior. We have applied our algorithm to our entire
data set, which features a wide variety of building types and
large amounts of noise from overhanging trees. We have
visually compared our results with building footprints ex-
tracted from architectural blueprints and aerial photography
in order to assess its accuracy.

This paper is organized as follows: Section 2 talks about

previous work, Section 3 provides a brief introduction to
LIDAR data, Section 4 explains our algorithm, Section 5
analyzes results, and Section 6 discusses our conclusion and
possible future work.

2. Previous Work

The automatic and semi-automatic modeling of urban ar-
eas using a variety of sensors including aerial LIDAR data
and camera images is an important area of research [11].
Most of the demand for these urban models is centered
around the creation of navigable 3D virtual models of cities
[18] [8] [24].

Building footprint extraction is an important step in the
pipeline from data acquisition to modeling. Building foot-
prints not only localize buildings within a point cloud, but
also reduce the search space for vertical walls and step
edges, which are generally believed to be one of the hardest
parts of roof modeling [21]. Frequently, previous work has
used pre-existing building footprints directly in their model-
ing techniques [10] [4]. These approaches bypass the prob-
lem that we propose as they assume previous knowledge of
individual building locations and shapes.

Some previous work has used external information
sources to try to find the building footprints. Brenner et
al. [3] uses multi-spectral reflectance to determine image
edges. In addition, standard edge detection techniques have
been applied to aerial images to try to extract visual cues
about the location of building boundaries [19]. Billard et
al. [2] presents an approach that incorporates multi-view
geometry techniques with aerial images to determine the
3D models of buildings. Kim and Nevatia [13] propose
a similar method but instead they use Bayesian networks
to combine edge detection information from multiple im-
ages to determine probable building walls. You et al. [24]
models buildings by means of a user-driven combination of
primitive roof shapes that are assembled to form complex
building models. We prefer to work only from LIDAR data
and with as little manual input as possible. Reducing man-
ual input has clear cost advantages. In addition, requiring
only LIDAR data reduces our dependence on the existence
of outside information which may be unavailable, costly to
acquire or difficult to register.

Many data driven methods of building footprint con-
struction simplify the problem by limiting building walls
to two perpendicular directions. Alharthy et al. [1] uses a
histogram method to determine the two dominant directions
where the walls lie. All boundary points are then connected
by lines that approximate one of these two directions. Maas
et al. [15] and Vosselman [23] present similar solutions for
automatically extracting building footprints by analyzing a
triangulated mesh of building points. They approximate the
contour of the edge polygons with straight lines using the



techniques presented in Douglas-Peucker [7]. They then
post-process their results in order to ensure that 80% of
the points are inside the building footprint. All of these
approaches have the disadvantage that they are not robust
in the case of very noisy building boundaries. In addi-
tion, these algorithms assume that buildings have two sets
of parallel walls, and will have difficulty on more compli-
cated buildings. Frueh and Zakhor [8] present a data-driven
method to construct an urban model from terrestrial LIDAR
scans mounted on a truck. However, this approach does
not explicitly model building roofs, and only provides de-
tail visible from the ground level.

Using a combination of Bayesian probability with opti-
mization techniques is not a new idea. It was presented to
the graphics community by Szeliski and Terzopoulos [22].
Energy minimization has also been applied to general mesh
smoothing and de-noising before, [12], and [17]. We use
a method similar to Diebel et al. [6] who use energy mini-
mization and penalty functions to achieve 3D mesh smooth-
ing and simplification. However, to our knowledge, we are
the first to use a maximum a posteriori estimation approach
to the problem of urban modeling with building specific pri-
ors. In addition, we propose a polygon approximation step
prior to the optimization and employ simulated annealing to
assist in the convergence.

Our contribution is a new and robust footprint creation
algorithm that is able to tolerate noise along building edges.
Our algorithm is also automatic, steerable with a prior, and
is not restricted to requiring only two directions for walls to
exist.

3. LIDAR Data and Pre-Classification
Overview

A typical aerial LIDAR system consists of a laser range
finder, differential GPS, inertial navigation sensors, a com-
puter and some storage media. This setup is mounted on
fixed wing airplanes or helicopters. The data is usually ac-
quired as a set of overlapping strips, each consisting of mul-
tiple scan lines corresponding to different passes over the re-
gion. A LIDAR data set consists of irregularly-spaced 2.5D
points where the elevation z has a unique value as a function
of x and y. This aerial LIDAR data is classified into three
classes (building, tree, grass) using an Adaboost machine
learning algorithm. This classification uses a small manu-
ally labeled data set to learn classification rules, which can
then be applied to the rest of the data. Using four features
– height, height variation, normal variation, and LIDAR re-
turn intensity, the classification performs at over 90% accu-
racy on test data sets. Therefore, aerial imagery data is not
needed for either pre-classification, segmentation, or the al-
gorithm presented in this work. The classified data is then
clustered into individual buildings using an automatic seg-

mentation algorithm. This process uses region growing on
the individual building points to locate and group buildings.
The output of this step is a set of individual building regions
which are the inputs to our algorithm.

4. Automatic Building Footprint Extraction

Each building region is represented as an unstructured
2.5D point cloud. We consider a projection of these points
onto the XY plane for the purpose of our algorithm. We use
a Bayesian technique to represent the posterior probability
of our building footprint. We determine initial conditions
for our MAP estimation by first approximating the building
footprint using an application of the shortest path algorithm.

Our algorithm has the three following steps:
(i) finding boundary points,
(ii) constructing building footprint approximation,
(iii) Find most probable building footprint using maximum
a posteriori estimation approach.

4.1. Finding Boundary Points

In order to construct an approximation of the building
footprint we first find the points that lie on the boundary of
the point cloud. This is done by using a local neighborhood
search. The key idea is that a point on the boundary should
have a large region in some direction where no other points
exist. Our algorithm tests each point P as follows:

For each point Pi, let Ci be the circle of radius R cen-
tered at point Pi. Find the largest angular region of Ci

where no building points exist. If this angular region is
larger than a threshold, make Pi a boundary point. We treat
a point as being on the boundary when there is a gap of 70◦

or more.
It is possible that this algorithm could miss occasional

boundary points in highly detailed boundary areas. How-
ever this is not a major problem as this step need only find
a rough outline of the building. This initial approximation
will be refined during optimization as described below. The
results of the computation are shown in Figure 2.

4.2. Finding Building Footprint Approxi-
mation

We now construct an initial building footprint by order-
ing the boundary points with a greedy search using the 2D
distance between points as a similarity metric. The ob-
jective of this step is to trace a path between neighboring
nodes along the boundary of the building until we return to
the starting point. Each point is labeled in the order that it
is visited, starting with an arbitrary seed point. The depth
first recursion is halted if the distance to the closest point is
greater than a threshold, or there are no more points to add.



This threshold is determined on the basis of data density, as
it should be set to around the average expected distance be-
tween points. If the closest point is significantly above the
average density of points, it is unlikely that it is ordering
correctly. This threshold will prevent far away points from
being labeled in sequence. Figure 2 illustrates an example
of the initial ordering.

Figure 2. Boundary points obtained by step 1 are
shown as bolder points. The initial ordering of
the boundary points discussed in section 4.2 is
shown as a red line.

This step of the algorithm may skip points in highly de-
tailed areas, or cut off regions that are connected by only
one point. We notice that this occurs mostly in tree regions
that have been misclassified as buildings. Because of the
half-meter resolution of our data points, it is unlikely that
a building would have a segment which is only one point
wide. Therefore, these cases tend not to affect building re-
gions.

We observe in Figure 3 that noise along the boundary is
preserved in the initial ordering. We attempt to reduce this
by computing an approximation to the initial building foot-
print ordering by using a shortest path algorithm. This step
is extremely important because the MAP estimation which
we describe in the next section defines prior error terms
on a local neighborhood, so noisy details can increase the
chances of converging to a poor local minimum. For exam-
ple, we can see in Figure 3 that if the original data is suf-
ficiently noisy, the initial building footprint ordering may
contain line segments belonging to the same wall, but with
90◦ angles between them. Because our prior has a pref-
erence to preserve right angles, these errors can keep the
optimization step from converging to a good solution.

The purpose of the next step of the algorithm is to ap-
proximate this set of line segments so as to prevent local
level noise from affecting the convergence of the minimiza-
tion problem. We will approximate the set of linear seg-
ments of the initial ordering using a min-ε error criteria
presented by Stone [20]. We use a graph search algorithm
proposed in Dahl and Realfsen [5] to solve for the best ap-

Figure 3. An initial ordering along a straight build-
ing wall is shown as a series of line segments.
Noise in the boundary points leads to right angles
which can hinder convergence in the optimization
process.

proximation. When connecting points a and b, we define
our error term as the average Euclidian distance from all the
points between a and b to the line segment formed by ab.
This is illustrated in Figure 4.

Figure 4. The error of approximating five line seg-
ments with a line segment from a to b is defined as
the sum of the distance from the subsumed points
to the final line segment, shown in this figure as
the four blue lines d1,d2,d3,d4.

To solve the min-ε problem, we create a graph where
each node is a point in our initial building footprint. An
edge exists for each line segment in the initial building or-
dering obtained in the previous step. We now create new
edges for all nodes which when connected have some error
less than ε. Computing the shortest path on this graph will
give us a polygon that has the minimum number of sides
where each edge has error less than ε for a given start and
end node. However, because we do not know the optimal
starting node beforehand, we modify the algorithm to com-
pute the best approximation for any given starting point.

We first wrap the initial polygon twice around itself, cre-
ating a graph with 2N nodes and then run the algorithm
described above. We then look for the shortest path from
nodes Pi to Pi+m over all nodes i, where m is the number
of nodes in our initial graph. This essentially tests all nodes
as starting nodes, and finds the one with the minimum num-
ber of sides. We use the Floyd-Warshall algorithm to com-
pute the shortest path, so each time it is computed, we have
a O(N3) solution. If we looked for the shortest path given



every starting node by recomputing the shortest path each
time, we would have a O(N4) algorithm. Using this method
that we present, we only need solve the shortest path once
on an input size of 2N , which gives us a quick O(2N)3 al-
gorithm. Figure 5 shows an example of the output of this
step of the algorithm.

Figure 5. Approximation of the boundary of a
building with a polygon obtained after step 2 of
the algorithm.

4.3. Bayesian Maximum A Posteriori Esti-
mation

At this point we have found a preliminary polygonal
footprint for the building point cloud. This section describes
how a Bayesian approach can improve the footprint by com-
bining the goodness of fit to the data with a prior on foot-
print shapes. The goodness of fit is measured by the (planar)
distance from the boundary points to the polygon, while the
prior is a function of the polygon’s angles that encourages
straight lines, 90◦, and (to a lesser extent) 45◦ and 135◦ an-
gles.

The Bayesian approach makes the assumption that there
is a joint distribution P (X, Z) = P (X)P (Z | X) where X
represents a building footprint and Z represents the location
of the boundary points. The prior P (X) encodes our belief
in the likelihood of various footprints while P (Z | X) is
the probability of seeing the boundary points Z given the
particular building footprint X . The maximum a posteri-
ori (MAP) prediction selects the footprint X̂ from the data
Z that maximizes P (X̂ | Z). By Bayes Theorem, this is
equivalent to selecting

X̂ = arg max
X

P (X)P (Z | X) . (1)

We consider distributions P (X) that depend only on the
k angles, a1, . . . , ak, between the footprint’s k sides1 and

1The number of sides (and thus angles) in the footprint have been fixed

can be written as P (X) ∝
∏k

i=1 f(ai). Square root priors,
where f(a) depends on

√
a have been suggested for natural

images because they have the effect of smoothing the data
while enhancing edges [14]. However, we are dealing with
man-made buildings, and use a function f that encourages
typical building angles as illustrated in Figure 6.

The boundary points tend to be reasonably distributed
around the point cloud’s perimeter, so we assume that P (Z |
X) is determined solely by the distance from the boundary
points to the footprint boundary. Furthermore, we assume
that these distances are independent draws from a Gaussian
distribution with mean 0 and variance σ2 (negative values
indicate that the boundary point lies outside the footprint).
Therefore, when the distances from the n boundary points
to the footprint polygon are d1, d2, . . . dn,

P (Z | X) =
n∏

j=1

1√
2πσ

exp

(
−

d2
j

2σ2

)
(2)

Rather than maximizing Equation 1 directly, it is equiv-
alent (and more convenient) to find the X minimizing the
negative log-likelihood, − log(P (X)P (Z | X)). With our
P (X) and P (Z | X), the MAP estimate becomes (after
dropping constants which do not affect the minimization)

X̂ = arg min
X

−
k∑

i=1

log f(ai) +
1

2σ2

n∑
j=1

d2
j . (3)

The function − log f(a) is defined as a cubic spline as
shown in Figure 6. The reason for using a cubic spline is
that it gives us enough flexibility to represent the informa-
tion that we want in our prior. Furthermore, a cubic spline
prior is simple to implement and it is easy to compute the
gradient at any point [6]. Figure 6 brings out the prefer-
ence for specific angles iin the prior clearly. A 180◦ angle
between line segments corresponds to a straight line and
is highly preferred, penalty being zero. Similraly, 90◦ be-
tween line segments is also preferred with zero penalty. An-
gles 45◦ and 135◦ are preferred with slightly lower penalties
compared to the angles nearby. Furthermore, we limit our
angles from 0◦ to 180◦ by reflecting around 180◦ so that a
distinction is not made between right and left turns.

This gives an optimization problem where the 1/(2σ2)
factor functions as a trade-off parameter between the impor-
tance of matching the prior (minimizing − log f(ai)) and
minimizing the distances between the the boundary points
and the footprint polygon. We use a gradient descent opti-
mization method to iteratively find a local minima for min-
imizing X in Equation 3. In addition, during this optimiza-
tion we use simulated annealing of the trade-off parameter

by the previous step, although we do allow adjacent sides to be co-linear
(having a 180◦ angle).



Figure 6. Prior on angles between neighboring line
segments − log f(a). The preference for straight
lines, 90◦, 45◦, and 135◦ bends can be seen in lo-
cal minima.

to help avoid local minima. The simulated annealing starts
with a small σ, so that a good fit with the boundary points is
emphasized. We then gradually increase σ, increasing the
emphasis on the angles. Without this annealing, the opti-
mization tends to lock into local phenomena with “good”
45◦, 135◦ and 90◦ angles before it has a chance to find a
good fit for the entire building point cloud. Figure 7 shows
an example of this. The final result of this optimization can
be seen in Figure 8.

Figure 7. Left: Minimization using annealing.
Right: Minimization not using annealing. The 135◦

local minima is visible.

Figure 8. Building Footprint after maximum a pos-
teriori estimation.

5. Results

We have applied our algorithm to our whole data set con-
sisting of 380 buildings. We visually compare our results
with aerial images, architectural drawings from the plan-
ning department, and ground truth in case of ambiguities.

We observe that for most buildings, the footprints that we
create were extremely similar in shapes to the architectural
blueprints, even in the presence of overhanging trees. Of
the 380 footprints that we reconstructed, roughly 86% were
good matches. In addition, in the 14% of the regions that
we had poor results on, nearly all were tree regions that had
been misclassified as buildings. If we consider only the ini-
tial regions that really corresponded to buildings, about 93%
of the footprints we created were good matches to the archi-
tectural footprints. We find that while small details such as
stairwells and awnings may be lost, the rough shape and
size of the buildings are well preserved in our reconstruc-
tion. We believe that these results are very promising, par-
ticularly considering the amount of overhanging trees and
boundary noise in our data set. Some of the results of our
algorithm are presented in Figure 9. In most cases, our al-
gorithm produced buildings constructed entirely out of right
angles. This is an encouraging result as it reflects the prefer-
ence for reconstructing right angles in our algorithm, which
account for 3677 of the 4781 angles in our ground truth.

We notice two problems in the results. First, the ini-
tial ordering occasionally terminates prematurely, skipping
parts of the region. This occurs almost entirely in tree re-
gions that had been mistakenly classified as buildings dur-
ing the preprocessing. Tree regions tend to have much less
of a continuous structure, so tracing a path around the bor-
der of a tree region is more complicated. Because our prob-
lem does not attempt to process trees, we do not expect to
be able to obtain any meaningful footprints out of these tree
regions, and we can attribute these errors to errors in the
classification step. In fact, it might be possible to use this in-
formation to improve the original classification results. We
show some of these results in Figure 10.

Figure 10. Tree regions reported as buildings
where the initial ordering did not approximate the
region shape.



Figure 9. Buildings from various sections of our college campus with computed building footprints shown.

Second, some buildings have been approximated with
an incorrect number of wall segments in section 4.2. This
makes an accurate maximum a posteriori estimation more
difficult. Because the optimization does not adaptively ad-
just the number of wall segments, it is unlikely to generate
a correct building footprint after this initial number of sides
has been picked. We can see some cases of this in Figure 11.

However, these two cases account for a small percentage
of buildings, and our results are very close matches with the
building footprints in general. Another advantage of our al-
gorithm is that we can compute a confidence value for each
building. By looking at the probability that the optimization
converged on, we have a general idea how well each build-
ing footprint fit our model. We can visualize these results
and confirm that the building footprints that were not able to
be correctly approximated with right angles, tended to have
lower probability. This statistic could be useful if we need
to decide how much trust to place in the resulting footprints.

Figure 11. Rectangular buildings approximated
with an incorrect number of wall segments.



6. Conclusion and Further Work

In conclusion, we present a viable option for quickly and
automatically creating building footprints for large regions
of buildings. Our algorithm functions well in the presence
of noise, and has an easily programmable prior for an exten-
sion into other applications. This technique could be used to
make building footprints more available for roof modeling
or other urban planning decisions.

As many of the the problems that we encounter are asso-
ciated with the initial ordering of the boundary points, fur-
ther work could be conducted on determining a more robust
method for this initial polygon approximation.

Because our approach uses an easily programmable prior
to steer the optimization, it would be possible to apply our
algorithm to other problems such as road modeling or de-
termining likely positions of power and telecommunication
lines. Furthermore, we would like to develop a method to
automatically learn the prior for an application based on
training data. This could extend the general idea we present
into a much more robust shape extraction algorithm.

Another area of research could be using a similar
Bayesian approach to the one that we present so as to com-
pute the entire 3D model for a building rather than the foot-
print. A different approximation method would be required
as well, as border points and neighboring angles would not
be enough to define the prior for entire buildings. This could
provide a useful and novel solution to the building modeling
problem.

7. Acknowledgments

We would like to thank Airborne1 Corporation for help-
ing us acquire the LIDAR data. This research is par-
tially supported by the Multi-disciplinary Research Initia-
tive (MURI) grant by U.S. Army Research Office under
Agreement Number DAAD19-00-1-0352, the NSF grant
ACI-0222900, and the NSF-REU grant supplement CCF-
0222900. We also thank James David for assisting us with
the refinement of some of the ideas presented in this work

References

[1] A. Alacrity and J. Bethel. Heuristic filtering and 3D fea-
ture extraction from LIDAR data. In ISPRS Commission III,
Symposium, 2002.

[2] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgibbon.
Automatic line matching and 3D reconstruction of buildings
from multiple views. In ISPRS Conference on Automatic Ex-
traction of GIS Objects from Digital Imagery, IAPRS Vol.32,
Part 3-2W5, pages 69–80, Sep 1999.

[3] C. Brenner. Towards fully automated generation of city mod-
els. ISPRS, 33, 2000.

[4] A. Brunn and U. Weidner. Extracting buildings from digital
surface models. IAPRS, 32, 1997.

[5] G. Dahl and B. Realfsen. Curve approximation and con-
strained shortest path problems, 1996.

[6] J. Diebel, S. Thrun, and M. Bruning. A bayesian method
for probable surface reconstruction and decimation. IEEE
Transaction on Graphics, 2005.

[7] D. H. Douglas and T. K. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a line or its
caricature. The Canadian Cartographer, 10:112–122, 1973.

[8] C. Frueh and A. Zakhor. An automated method for large-
scale, ground-based city model acquisition. International
Journal of Computer Vision, 60(1):5–24, 2004.

[9] N. Haala and C. Brenner. Generation of 3D city models from
airborne laser scanning data. In Proceedings EARSEL work-
shop on LIDAR remote sensing on land and sea, pages 105–
112, Tallin, Estonia, 1997.

[10] N. Haala, C. Brenner, and K. Andres. 3D urban GIS from
laser altimeter and 2D map data. ISPRS, 32:339–346, 1998.

[11] J. Hu, S. You, and U. Neumann. Approaches to large-scale
urban modeling. IEEE Computer Graphics and Applica-
tions, 23(6):62–69, 2003.

[12] T. Jones, F. Durand, and M. Desbrun. Non-iterative,
feature-preserving mesh smoothing. ACM Trans. Graph.,
22(3):943–949, 2003.

[13] Z. Kim and R. Nevatia. Automatic description of complex
buildings from multiple images. Comput. Vis. Image Un-
derst., 96(1):60–95, 2004.

[14] A. Levin, A. Zomet, and Y. Weiss. Learning to perceive
transparency from the statistics of natural scenes. In NIPS,
pages 1247–1254, 2002.

[15] H. Maas and G. Vosselman. Two algorithms for extracting
building models from raw laser altimetry data. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 54(2-3):153–
163, 1999.

[16] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[17] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm

for changing mesh topology during simulation. ACM Trans.
Graph., 23(3):385–392, 2004.

[18] W. Ribarsky, T. Wasilewski, and N. Faust. From urban ter-
rain models to visible cities. IEEE Computer Graphics and
Applications, 22(4):10–15, 2002.

[19] F. Rottensteiner, J. Trinder, S. Clode, K. Kubik, and
B. Lovell. Building detection by dempster-shafer fusion of
LIDAR data and multispectral aerial imagery. In Proceed-
ings, ICPR ’04, volume 2, pages 339–342, Washington, DC,
USA, 2004. IEEE Computer Society.

[20] H. Stone. Approximation of curves by line segments. Math.
Comput., 15:40–47, 1961.

[21] I. Suveg and G. Vosselman. Automatic 3D building recon-
struction. SPIE, 4657-4677:59–69, 2002.

[22] R. Szeliski and D. Terzopoulos. From splines to fractals. In
Proceedings, SIGGRAPH ’89, pages 51–60, New York, NY,
USA, 1989. ACM Press.

[23] G. Vosselman. Building reconstruction using planar faces in
very high density heights data. IAPRS, 32:87–92, 1999.

[24] S. You, J. Hu, U. Neumann, and P. Fox. Urban site modeling
from LIDAR. In ICCSA (3), pages 579–588, 2003.


