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ABSTRACT

Live sports broadcast is seeing a large increase in the number
of cameras used for filming. More cameras can provide bet-
ter coverage of the field and a wider range of experiences for
viewers. However, choosing optimal cameras for broadcast
demands a high level of concentration, awareness and expe-
rience from sports broadcast directors. We present an auto-
matic assistant to help select likely candidates from a large
array of possible cameras. Sports directors can then choose
the final broadcast camera from the reduced suggestion set.
Our assistant uses both widely acknowledged cinematogra-
phy guidelines for sports directing, as well as a data-driven
approach that learns specific styles from directors.

Index Terms— Computational Broadcast, Machine
Learning, Shot Selection, Image Understanding

1. INTRODUCTION

Since its introduction in 1927, live TV sports broadcasting
has grown into a major form of entertainment. In 2008, an
estimated 4.7 billion people turned on their TVs to follow
the Beijing Olympics (roughly two-thirds the world’s popu-
lation). One crucial part of sports broadcasting is the role of
the director, whose job is to select the best possible camera
from all available cameras at all times: the story should be
consistent and complete, important events should be empha-
sized, the cuts between cameras should be perceived naturally
by the audience, and the overall video composition should be
aesthetically pleasing. However, with a large number of cam-
eras in stadiums, merely scrutinizing all camera signals at the
same time can already be quite overwhelming. As more cam-
eras become introduced, this problem will only become more
challenging.

In this work, we present an interactive, intelligent and in-
tuitive system for sports broadcasting designed to assist direc-
tors in finding and recommending potential broadcast camera
views from a large number of possible cameras. We propose
two different approaches to determine camera ranking using
machine learning techniques. Our first method is based on
cinematographic rules supported by user data from a general
audience, and attempts to learn an aesthetic quality for the
different cameras. The second approach learns a director’s

specific directorial style based on their previously recorded
footage. This method leverages a rich dataset of already ex-
isting training data in the form of expert-directed broadcast
footage. Both methods show promising results, and show the
potential of data-driven approaches for camera selection. In
addition to TV broadcast, our framework is also applicable to
virtual 3D environments that require virtual camera selection
such as sports games.

2. RELATED WORK

In this section, we will survey the following three areas: com-
putational aesthetics, computer vision for sports, and recent
works in computational sports broadcasting.

Computational Aesthetics. The goal of computational aes-
thetics is to accurately predict the perceived aesthetics of vi-
sual content. A promising approach is the use of machine
learning techniques on human labeled data [1], where the in-
fluence of low-level features such as hue, saturation, rule of
thirds, texture and depth of field is taken into account. In-
spired by this work, researchers investigated the influence of
additional low-level features [2, 3] as well as high-level fea-
tures such as human faces [4] and visually salient regions [5].

While much work exists for image aesthetics, video aes-
thetics is still in its infancy. One example is Moorthy et al [6],
who presented an approach inspired by [1] that uses a combi-
nation of 97 low-level features to train the aesthetics predictor.
While their approach is for general video, we show that for
one specific genre of video we can achieve a better accuracy
rate with a smaller number of more specialized features. In
contrast to their work, we furthermore are able to personalize
the perceived aesthetics to a certain directing style.

Computer Vision in Sports. Computer vision has been
widely addressed in sports, and many methods are presented
to identify and track players [7, 8, 9, 10]. The most important
advances in this field are summarized in a recent survey of
D’Orazio [11]. While our system uses vision analysis, we do
not address it in this work and rather consider such data given
as an input.

Computational Sports Broadcasting. Wang et al. [12]
propose a sports broadcasting composition algorithm for au-



tomatic generation of replays and automatic camera selection.
The camera selection algorithm is based on a hidden Markov
model that has been trained with hand-labeled data, and only
uses information of the camera motion parameters (pan, tilt,
zoom, focus). As a result, their approach aims at selecting the
view that is least blurred. Alternatively, Choi et al. [13] pro-
poses the use of tracking information of the ball and to auto-
matically select the views in which the ball is clearly visible.
The approach is therefore biased toward wide-angle camera
views and cannot cope with suitations in which no ball is vis-
ible. Compared with these two approaches, our method pro-
vides a more complete and robust solution. We use additional
features, and provide both generalized aesthetic and person-
alized learning models.

3. OVERVIEW

The goal of our work is to select the best view from a list of
possible cameras. We propose two different machine-learning
approaches to solve this problem. The first approach is re-
lated to computational aesthetics, where sports-specific im-
age features are used to learn the aesthetic quality of video
sequences, based on training data acquired through a user
study. The second approach is designed to learn directorial
style, where low-level camera information and player loca-
tion as features are used to learn how to predict shots, based
on training from a qualified director’s past broadcast record-
ings. In the following, we will first describe the data set used
to evaluate our approaches. We will then describe both ap-
proaches in detail.

Evaluation Dataset. Both approaches will be evaluated on
footage of a field hockey match, filmed with three calibrated,
human-controlled cameras. In addition to the video streams,
the data set contains a final broadcast video created by a pro-
fessional director, and tracking data in the form of player lo-
cations in field coordinates. We break the video streams from
each camera i into short five-second clips Clip(i,l). Our goal
then is to determine the best camera to broadcast for each time
interval l.

4. COMPUTATIONAL AESTHETICS

Our first approach is based on computational aesthetics.
More specifically, all video cameras are ranked based on au-
tomatically computed aesthetic features. As opposed to previ-
ous work, our features are targeted towards sports broadcast-
ing and include the visibility of the ball, player distribution as
well as the temporal motion of the players. The features are
then used in a support vector machine (SVM) to compute an
overall camera ranking. The influence of each feature in the
SVM is trained from user-labeled preference data, which is
determined by a user study.

4.1. Features

We define features over micro-shots, which consist of 15
consequential frames. We denote the beginning and end as
MSbegin and MSend respectively. We first define four features
for each frame, fball, fplayers, fthirds, fsize, which we describe
next.

Ball Visibility. The most common feature in live sports
is often the ball, around which all the action is centered. In
many cases, the position of the ball can be detected either
using embedded sensors or image processing, or as in our
case, human-labeled data. The feature descriptor fball then
describes whether the ball is visible in the current clip.

fball =

{
1 if ball is visible
0 else . (1)

Player distribution. We use the position of the players as
one of the main aesthetic rules. First, we assign an importance
value Ij to each player, where

∑
Ij = 1 over all players. The

importance value is determined based on the importance of
each player: higher influence is assigned to strikers and super-
stars, which usually draw more attention from the audience.
Then, the following scores are used as aesthetic features:

1. Most of the time the audience prefers camera views
that cover a large number of the players on the field,
as it provides a full picture and is less likely to miss out
on major actions. Therefore, we define fplayers as the
weighted sum of all visible players:

fplayers =
∑

j∈visible

Ij . (2)

2. The rule of thirds is a popular aesthetic guideline in
photography, which proposes that the object of inter-
est should positioned along at the crossings of the third
lines of an image. More specifically, the four crossing
points for an image of size [w, h] are defined as

ca,b =

[
a

3
w,

b

3
h

]
for a, b = 1, 2.

For each player j, we then quantify the rule of thirds as
the minimum distance between the image position xj

of a players’ head to the four crossings.

Dj = min
(a,b)
‖xj − ca,b‖ for a, b = 1, 2. (3)

The aesthetic score is then computed as weighted aver-
age of the rule of thirds for all visible players:

fthirds =

∑
j∈visible IjDj∑
j∈visible Ij

. (4)



Fig. 1. User Study. Users are presented with a synchronized
set of clips for each task. The order of the clips are randomly
permuted. Users are asked to watch the video and select one
which they like the most, and one which they like the least.

3. Salient objects should preferably have prominent sizes
in the image. Such a score can be quantified using a
weighted sum of all visible players:

fsize =
∑

j∈visible

IjAj , (5)

where Aj denotes the image area occupied by player j.

Temporal smoothness. Finally, we add a temporal smooth-
ness term that computes the movement of players throughout
a micro-shot. We define the jth player’s position at frame k
as xj [k], and define smoothness as:

fsmoothness =
∑
j

∥∥xj [MSbegin]− xj [MSend]
∥∥. (6)

Total number of features. For each feature, we com-
pute six different measures, using the mean, median, max,
min, first quartile, and third quartile of each feature over the
micro-shot. Adding the additional temporal smoothness term
fsmoothness, we then have 25 features per microshot.

4.2. Training

In order to train the support vector machine, we determined
aesthetic labels for each micro-clip through a user study. In
each task, users were explicitly asked to judge three randomly
selected videos for quality scores based on content, composi-
tion, and smoothness by selecting which clips they preferred
most and least (Figure 1). These three videos are selected
from the same period of game shot by three different cameras,
and the users are required to choose the camera that captures
the game best during that event. In total, 30 tasks were pre-
sented to each user. A total of 35 participants, 26 male and
9 female, completed our user study, of this group, 85.7% of
participants reported to watch sports on a regular basis.

To learn how to predict the audience’s preference on
sports recordings, we use the labels good and bad to train a
SVM model [14] with Gaussian radial basis functions (RBF),

using the features presented in Section 4.1 as input. The la-
bels good and bad are derived from the user study as follows.
Let V +

(i,l) and V −(i,l) be the number of votes ‘most preferred’
and ‘least preferred’ for clip l from camera i. We compute the
absolute score of a clip as V(i,l) = V +

(i,l)−V −(i,l), and label the
clips V(i,l) > 0 with good and V(i,l) < 0 as bad.

4.3. Results

We use a 2-class SVM to learn a good/bad predictor of clips.
The model is trained on 740 labeled data points, using 10-
fold cross validation, taking 6.961 seconds on a quad-core
computer. Our validation data set includes 30 clips from 10
different time periods of a game. When applying the trained
SVM classifier to the remaining validation dataset, we are
able to achieve a validation result of 74.1% when compar-
ing the SVM prediction to the user preferences.

To assist directors with camera choices, we need to rank
the camera views for each frame. We use the margin of a pre-
diction result in SVM as a ranking for views. To visualize
the effectiveness of our method, we automatically generate a
broadcast video with the test set which consists of 30 consecu-
tive clips. We use our trained SVM model to predict the cam-
era of choice for each clip. We show comparisons between
the human directed broadcast video from the dataset and our
automatically generated broadcast video using the same input
videos in Figure 2. The video can be found in supplementary
materials. As shown, the most recommended camera com-
puted from our algorithm for each frame is consistently better
than the two less recommended ones. Furthermore, our clas-
sifier is based on the audience’s preference rather than the
director’s preference, and does not agree with the director’s
choice in roughly half the time. This suggests that directors
often employ their own story-telling style, which gave rise to
our next approach.

5. LEARNING DIRECTOR STYLES

While our first approach allows to please a general audience,
many directors may want to preserve their distinct style for
the automatic camera selection. To acknowledge these indi-
vidual artistic styles, we propose a second prediction method,
where we learn a predictor based on previous footage of a
given director.

5.1. Features

In order to evaluate the smoothness of a video, we use the
same notation of a 15-frame micro-shot as defined in Sec-
tion 4.1. We consider a different set of features, as the high
level concepts we are trying to quantify are fundamentally
different. In the previous section, we employed features that
were associated with sports aesthetics to please a general au-



Fig. 2. Comparison between the automatic suggestions
with the computational aesthetics approach and the direc-
tor’s choice. We show side-by-side comparisons of 4 frames
drawn with equal spacing (15 seconds apart). (a) The direc-
tor’s choice for the 4 frames as shown in the broadcast video.
(b) The most recommended camera generated with our algo-
rithm. (c) The second most recommended camera. (d) The
least recommended camera.

dience. In this section, we use features that reflect director’s
choices based on higher-level game information.

1. Player distribution: Our first class of features de-
scribes the distribution of the players on the field. We
divide the pitch into 12 equal areas, and perform player
counting in these areas only (Figure 3). The first 12
features are then computed as the number of players in
each area averaged over one micro-shot.

2. Game flow: As second class of features we describe
the flow of the game. Denote the number of players for
the region d in frame Fk as PlayerCount(k,d), then

f ′flow(d) = PlayerCount(k0,d)
− PlayerCount(k0−14,d)

is defined as the temporal flow of players for one area
over one micro-shot. Note that one such feature is com-
puted for each of the 12 areas.

3. Camera Movement: As last set of features, we in-
clude the temporal motion of the cameras. For each
camera i at frame k, we use the parameters Pan(i,k)
and Tilt(i,k) to construct rotation features. Further, we
include Zoom(i,k) to construct magnification features.
We compute the first five camera features for the i-th
camera as the average of sin(Pan(i,k)), sin(Tilt(i,k)),
and Zoom(i,k). In addition, we include the magnitude
and direction of the camera movement over one micro-
shot, and construct a second set of five features as the
difference between the value at the start and end of the
micro-shot for each of the above three measures.
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Fig. 3. Labeled Regions of a Hockey Pitch. We divide the
field into 12 regions of equal size. We count the number of
players in each region to generate the player location features.

5.2. Training

In contrast to the aesthetics-based approach, meaningful la-
bels can be easily derived from a director’s previous footage.
More specifically, we assign a camera identifier to the label
Lk that has been chosen as ‘live’ camera at frame k. As a
result, we can use a higher-dimensionality feature set, and
provide many more training examples. We therefore use a
random forest model [15] to train the predictor, rather than
an SVM, which provides faster performance for training and
testing on larger datasets.

5.3. Results

We used a random forest model implemented by OpenCV to
train the 3-class classifier. The number of trees is determined
automatically by the algorithm. The training was performed
on 2000 frames randomly selected from 35 minutes of data,
and took 1.037 seconds on a quad-core computer. We chose
the same number of data points from each class. Inside each
class, we picked the training data randomly and made sure
that the micro-shots for the selected data do not overlap.

For testing, we used 35 minutes (52500 frames) of data.
We compared the first choice suggested by our algorithm with
the director’s choice and achieved an accuracy of 51.59%.
If we also consider the second choice, the director’s choice
in 93.79% of the frames were in either the first or second
choices suggested by our algorithm. The results are promis-
ing and the accuracy is significantly higher than using a ran-
dom choice (33.33%).

To compare the automatic suggestion and the director’s
choice, we composed a video from the best shot suggested by
our algorithm and compared it side by side with the director’s
choice for the testing data set. In general, our automatic cam-
era ranking does reflect the director’s preference very well.
A few screen shots are shown in Figure 4, and an analysis



Fig. 4. Comparison between the automatic suggestions
trained with raw data and the director’s choice. We show
side-by-side comparisons of 4 frames drawn with equal spac-
ing (10 seconds). (a) The director’s choice for the 4 frames
as shown in the broadcast video. (b) The most recommended
camera generated with our algorithm. (c) The second most
recommended camera. (d) The least recommended camera.

is described in the next section. The full video can be found
in the supplementary materials. It can be seen that our sug-
gested choice echoes the director’s choice in the majority of
the frames.

6. COMPARISONS BETWEEN METHODS

We proposed two different data-driven approaches above for
automatic shot suggestion. Despite computing features from
the same dataset, the features and labels are constructed in
different ways and with different intents. Features used to
learn aesthetic models are based on heuristics, such as the
rule of thirds, and player/ball visibility. They are designed
predict how appealing a given camera is at any time, and do a
good job of predicting user preference. However, they do not
perform as well at predicting the high-level information that
directors use to determine camera cuts, such as the flow and
current state of the game.

The features used in the directorial style approach are de-
signed to provide a more high level model of game semantics.
One disadvantage of the directorial features is that the dimen-
sionality is much higher compared to the aesthetic rules (25
vs 54 dimensions). In order to learn an accurate model of such
high dimensionality a large amount of data would be needed,
which is hard to acquire from user studies. The directorial
style approach does not suffer from this limitation, as exist-
ing broadcast video can be used as training data.

7. CONCLUSION

We have presented two methods for automatic shot sugges-
tion using computational approaches. The first method uses
computational aesthetics and a visual preference-based user

study to learn how to predict whether a clip of sports record-
ing is visually appealing. The second method uses camera
and tracking-based features to learn an individual director’s
style. Both methods show promising results, and are able to
predict the preferred cameras faithfully.

Our implementations have several limitations that can be
addressed in future work. The evaluation data set included a
limited set of tracking features only, and we believe that more
features such as the position of the ball could improve the
results significantly. Similarly, we only considered the num-
ber of players in different regions, but robust player tracking
would allow us to consider individual player movement. Fur-
thermore, while we applied our work to field-based sports, it
would be interesting to extend our learning method to other
sports. We believe that our method should be extendable to
any ball-based sport.

Despite these limitations, we believe that computational
assistance has the potential to become a very important part
of live sports broadcast, and contains many areas for future
work. Given camera parameters and player tracking data,
our system aims at real-time performance in shot suggestion.
Generating replays in sports broadcasts is also a very inter-
esting but little-explored area. To do this, the camera ranking
system would have to be extended to not only recommend the
camera with the best shots matching the compositions, but
also determine the boundary of the shot for the replay.

In addition, our algorithms might very well be applicable
to sports computer games. In such virtual environments, all
the data on player location and camera parameters is readily
available, and it would be very easy to incorporate our best
shot suggestion and scripting algorithms. This would allow
to essentially learn a director’s style, and apply it to an in
game virtual camera. Users could then select from a range
of director’s styles to find one that best suits their viewing
expectations.
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